
cget Documentation
Release 0.1.0

Paul Fultz II

March 02, 2017

Contents

1 Introduction 3
1.1 Installing cget . 3
1.2 Quickstart . 3
1.3 Usage . 4

2 Package source 7
2.1 Directory . 7
2.2 File . 7
2.3 URL . 7
2.4 Github . 7
2.5 Recipe . 8
2.6 Aliasing . 8

3 Requirements file 9

4 Commands 11
4.1 build . 11
4.2 clean . 12
4.3 init . 12
4.4 install . 13
4.5 list . 14
4.6 pkg-config . 14
4.7 remove . 14

5 Using cget 15
5.1 Installing cmake packages . 15
5.2 Installing non-cmake packages . 16

6 Using recipes 17
6.1 Structure of a recipe . 17
6.2 Getting recipes . 17

7 Indices and tables 19

i

ii

cget Documentation, Release 0.1.0

Contents:

Contents 1

cget Documentation, Release 0.1.0

2 Contents

CHAPTER 1

Introduction

Cmake package retrieval. This can be used to download and install cmake packages. The advantages of using cget
are:

• Non-intrusive: There is no need to write special hooks in cmake to use cget. One cmake file is written and can
be used to install a package with cget or standalone.

• Works out of the box: Since it uses the standard build and install of cmake, it already works with almost all
cmake packages. There is no need to wait for packages to convert over to support cget. Standard cmake
packages can be already installed immediately.

• Decentralized: Packages can be installed from anywhere, from github, urls, or local files.

Installing cget

cget can be simply installed using pip (you can get pip from here):

pip install cget

Or installed directly with python:

python setup.py install

On windows, you may want to install pkgconfig-lite to support packages that use pkgconfig. This can be installed with
cget as well:

cget install pfultz2/pkgconfig

Quickstart

We can also install cmake packages directly from source files, for example zlib:

cget install http://zlib.net/zlib-1.2.8.tar.gz

However, its much easier to install recipes so we don’t have to remember urls:

cget install pfultz2/cget-recipes

Then we can install packages such as boost:

3

https://pip.pypa.io/en/stable/installing/

cget Documentation, Release 0.1.0

cget install boost

Or curl:

cget install curl

Usage

Installing a package

Any library that uses cmake to build can be built and installed as a package with cget. A source for package can be
from many areas (see Package source). We can simply install zlib with its URL:

cget install http://zlib.net/zlib-1.2.8.tar.gz

We can install the package from github as well, using a shorten form. For example, installing John MacFarlane’s
implementation of CommonMark in C called cmark:

cget install jgm/cmark

Removing a package

A package can be removed by using the same source name that was used to install the package:

cget install http://zlib.net/zlib-1.2.8.tar.gz
cget remove http://zlib.net/zlib-1.2.8.tar.gz

If an alias was specified, then the name of the alias must be used instead:

cget install zlib,http://zlib.net/zlib-1.2.8.tar.gz
cget remove zlib

Testing packages

The test suite for a package can be ran before installing it, by using the --test flag. This will either build the check
target or run ctest. So if we want to run the tests for zlib we can do this:

cget install --test http://zlib.net/zlib-1.2.8.tar.gz

Setting the prefix

By default, the packages are installed in the local directory cget. This can be changed by using the --prefix flag:

cget install --prefix /usr/local zlib:http://zlib.net/zlib-1.2.8.tar.gz

The prefix can also be set with the CGET_PREFIX environment variable.

4 Chapter 1. Introduction

https://github.com/jgm/cmark

cget Documentation, Release 0.1.0

Integration with cmake

By default, cget creates a cmake toolchain file with the settings necessary to build and find the libraries in the cget
prefix. The toolchain file is at $CGET_PREFIX/cget.cmake. If another toolchain needs to be used, it can be
specified with the init command:

cget init --toolchain my_cmake_toolchain.cmake

Also, the C++ version can be set for the toolchain as well:

cget init --std=c++14

Which is necessary to use modern C++ on many compilers.

1.3. Usage 5

cget Documentation, Release 0.1.0

6 Chapter 1. Introduction

CHAPTER 2

Package source

Directory

This will install the package that is located at the directory:

cget install ~/mylibrary/

There must be a CMakeLists.txt in the directory.

File

An archived file of the package:

cget install zlib-1.2.8.tar.gz

The archive will be unpacked and installed.

URL

A url to the package:

cget install http://zlib.net/zlib-1.2.8.tar.gz

The file will be downloaded, unpacked, and installed.

Github

A package can be installed directly from github using just the namespace and repo name. For example, John MacFar-
lane’s implementation of CommonMark in C called cmark can be installed like this:

cget install jgm/cmark

A tag or branch can specified using the @ symbol:

cget install jgm/cmark@0.24.1

7

https://github.com/jgm/cmark

cget Documentation, Release 0.1.0

Recipe

A recipe name can also be installed. See Using recipes for more info.

Aliasing

Aliasing lets you pick a different name for the package. So when we are installing zlib, we could alias it as zlib:

cget install zlib,http://zlib.net/zlib-1.2.8.tar.gz

This way the package can be referred to as zlib instead of http://zlib.net/zlib-1.2.8.tar.gz.

8 Chapter 2. Package source

CHAPTER 3

Requirements file

cget will install all packages listed in the requirements.txt file. Each requirement is listed on a new line.

<package-source>

This specifies the package source (see Package source) that will be installed.

-H, --hash
This specifies a hash checksum that should checked before installing the packaging. The type of hash
needs to be specified with a colon first, and then the hash. So for md5, it would be something like
md5:6fc67d80e915e63aacb39bc7f7da0f6c.

-b, --build
This is a dependency that is only needed for building the package. It is not installed as a dependent of the
package, as such, it can be removed after the package has been installed.

-t, --test
cget will only install the dependency if the tests are going to be run. This dependency is also treated as a build
dependency so the it can be removed after the package has been installed.

-D, --define VAR=VALUE
Extra configuration variables to pass to CMake.

-X, --cmake
This specifies an alternative cmake file to be used to build the library. This is useful for packages that don’t have
a cmake file.

9

cget Documentation, Release 0.1.0

10 Chapter 3. Requirements file

CHAPTER 4

Commands

build

This will build a package, but it doesn’t install it. This is useful over using raw cmake as it will use the cmake toolchain
that was initialized by cget which sets cmake up to easily find the dependencies that have been installed by cget.

<package-source>

This specifies the package source (see Package source) that will be built.

-p, --prefix PATH
Set prefix where packages are installed. This defaults to a directory named cget in the current working direc-
tory. This can also be overidden by the CGET_PREFIX environment variable.

-v, --verbose
Enable verbose mode.

-B, --build-path PATH
Set the path for the build directory to use when building the package.

-t, --test
Test package after building. This will set the BUILD_TESTING cmake variable to true. It will first try to run
the check target. If that fails it will call ctest to try to run the tests.

-c, --configure
Configure cmake. This will run either ccmake or cmake-gui so the cmake variables can be set.

-C, --clean
Remove build directory.

-P, --path
Show path to build directory.

-D, --define VAR=VALUE
Extra configuration variables to pass to CMake

-T, --target TARGET
Cmake target to build.

-y, --yes
Affirm all questions.

-G, --generator GENERATOR
Set the generator for CMake to use.

11

cget Documentation, Release 0.1.0

clean

This will clear the directory used by cget. This will remove all packages that have been installed, and any toolchain
settings.

-p, --prefix PATH
Set prefix where packages are installed. This defaults to a directory named cget in the current working direc-
tory. This can also be overidden by the CGET_PREFIX environment variable.

-v, --verbose
Enable verbose mode.

-y, --yes
Affirm all questions.

init

This will initialize the cmake toolchain. By default, the install command will initialize a cmake toolchain if one
doesn’t exists. This allows setting different variable, such as setting C++ compiler or standard version.

-p, --prefix PATH
Set prefix where packages are installed. This defaults to a directory named cget in the current working direc-
tory. This can also be overidden by the CGET_PREFIX environment variable.

-v, --verbose
Enable verbose mode.

-B, --build-path PATH
Set the path for the build directory to use when building the package.

-t, --toolchain FILE
Set cmake toolchain file to use.

--cxx COMPILER
Set c++ compiler.

--cxxflags FLAGS
Set additional c++ flags.

--ldflags FLAGS
Set additional linker flags.

--std TEXT
Set C++ standard if available.

-D, --define VAR=VALUE
Extra configuration variables to pass to CMake.

--shared
Set toolchain to build shared libraries by default.

--static
Set toolchain to build static libraries by default.

12 Chapter 4. Commands

cget Documentation, Release 0.1.0

install

A package can be installed using the install command. When a package is installed, cget configures a build
directory with cmake, and then builds the all target and the install target. So, essentially, cget will run the
equivalent of these commands on the package to install it:

mkdir build
cd build
cmake -DCMAKE_TOOLCHAIN_FILE=$CGET_PREFIX/cget/cget.cmake -DCMAKE_INSTALL_PREFIX=$CGET_PREFIX ..
cmake --build .
cmake --build . --target install

However, cget will always create the build directory out of source. The cget.cmake is a toolchain file that is setup
by cget, so that cmake can find the installed packages. Other setting can be added about the toolchain as well(see
init).

<package-source>

This specifies the package source (see Package source) that will be installed.

-p, --prefix PATH
Set prefix where packages are installed. This defaults to a directory named cget in the current working direc-
tory. This can also be overidden by the CGET_PREFIX environment variable.

-v, --verbose
Enable verbose mode.

-B, --build-path PATH
Set the path for the build directory to use when building the package.

-U, --update
Update package. This will rebuild the package even its already installed and replace it with the newly built
package.

-t, --test
Test package before installing. This will set the BUILD_TESTING cmake variable to true. It will first try to
run the check target. If that fails it will call ctest to try to run the tests.

--test-all
Test all packages including its dependencies before installing by running ctest or check target.

-f, --file FILE
Install packages listed in the file.

-D, --define VAR=VALUE
Extra configuration variables to pass to CMake.

-G, --generator GENERATOR
Set the generator for CMake to use.

-X, --cmake
This specifies an alternative cmake file to be used to build the library. This is useful for packages that don’t have
a cmake file.

--debug
Install the debug version of the package.

--release
Install the release version of the package.

4.4. install 13

cget Documentation, Release 0.1.0

list

This will list all packages that have been installed.

-p, --prefix PATH
Set prefix where packages are installed. This defaults to a directory named cget in the current working direc-
tory. This can also be overidden by the CGET_PREFIX environment variable.

-v, --verbose
Enable verbose mode.

pkg-config

This will run pkg-config, but will search in the cget directory for pkg-config files. This useful for finding dependencies
when not using cmake.

-p, --prefix PATH
Set prefix where packages are installed. This defaults to a directory named cget in the current working direc-
tory. This can also be overidden by the CGET_PREFIX environment variable.

-v, --verbose
Enable verbose mode.

remove

This will remove a package. If other packages depends on the package to be removed, those packages will be removed
as well.

<package-name>
This is the name of the package to be removed.

-p, --prefix PATH
Set prefix where packages are installed. This defaults to a directory named cget in the current working direc-
tory. This can also be overidden by the CGET_PREFIX environment variable.

-v, --verbose
Enable verbose mode.

-y, --yes
Affirm all questions.

14 Chapter 4. Commands

CHAPTER 5

Using cget

Installing cmake packages

When package is installed from one of the package sources(see Package source) using the install command, cget
will run the equivalent cmake commands to install it:

mkdir build
cd build
cmake -DCMAKE_TOOLCHAIN_FILE=$CGET_PREFIX/cget/cget.cmake -DCMAKE_INSTALL_PREFIX=$CGET_PREFIX ..
cmake --build .
cmake --build . --target install

However, cget will always create the build directory out of source. The cget.cmake is a toolchain file that is setup
by cget, so that cmake can find the installed packages. Other settings can be added about the toolchain as well(see
init).

The cget.cmake toolchain file can be useful for cmake projects to use. This will enable cmake to find the depen-
dencies installed by cget as well:

cmake -DCMAKE_TOOLCHAIN_FILE=$CGET_PREFIX/cget/cget.cmake ..

Instead of passing in the toolchain, cget provides a build command to take of this already(see build). This will
configure cmake with cget.cmake toolchain file and build the project:

cget build

By default, it will build the all target, but a target can be specified as well:

cget build --target some_target

For projects that don’t use cmake, then its matter of searching for the dependencies in CGET_PREFIX. Also, it is quite
common for packages to provide pkg-config files for managing dependencies. So, cget provides a pkg-config
command that will search for the dependencies that cget has installed. For example, cget pkg-config can be
used to link in the dependencies for zlib without needing cmake:

cget install zlib,http://zlib.net/zlib-1.2.8.tar.gz
g++ src.cpp `cget pkg-config zlib --cflags --libs`

15

cget Documentation, Release 0.1.0

Installing non-cmake packages

Using custom cmake

For packages that don’t support building with cmake. A cmake file can be provided to build the package. This can
either build the sources or bootstrap the build system for the package:

cget install SomePackage --cmake mycmake.cmake

Header-only libraries

For libraries that are header-only, cget provides a cmake file header to install the headers. For example,
Boost.Preprocessor library can be installed like this:

cget install boostorg/preprocessor --cmake header

By default, it installs the headers in the ‘include’ directory, but this can be changed by setting the INCLUDE_DIR
cmake variable:

cget install boostorg/preprocessor --cmake header -DINCLUDE_DIR=include

Binaries

For binaries, cget provides a cmake file binary which will install all the files in the package without building any
source files. For example, the clang binaries for ubuntu can be installed like this:

cget install clang,http://llvm.org/releases/3.9.0/clang+llvm-3.9.0-x86_64-linux-gnu-ubuntu-16.04.tar.xz --cmake binary

Boost

A cmake boost is provided to install boost libraries as well:

cget install boost,http://downloads.sourceforge.net/project/boost/boost/1.62.0/boost_1_62_0.tar.bz2 --cmake boost

Libraries can be selected with cmake variables BOOST_WITH_ and BOOST_WITHOUT_. For example, just
Boost.Filesystem(and it dependencies) can be built as:

cget install boost,http://downloads.sourceforge.net/project/boost/boost/1.62.0/boost_1_62_0.tar.bz2 --cmake boost -DBOOST_WITH_FILESYSTEM=1

Also, everthing cam be built except Boost.Python like the following:

cget install boost,http://downloads.sourceforge.net/project/boost/boost/1.62.0/boost_1_62_0.tar.bz2 --cmake boost -DBOOST_WITHOUT_PYTHON=1

16 Chapter 5. Using cget

CHAPTER 6

Using recipes

Many times a package doesn’t list its dependencies in a requirements.txt file, or it requires special defines or custom
cmake(see Using custom cmake). A recipe helps simplify this, by allowing a package to be installed with a simple
recipe name without needing to update the original package source.

Structure of a recipe

A recipe is a directoy which contains a ‘package.txt’ file and an optional ‘requirements.txt’ file. Both files follow the
format describe in Requirements file. The ‘package.txt’ file list only one package, which is the package to be installed.
The ‘requirements.txt’ list packages to be installed as dependecies, which can also reference other recipes.

All recipe directories are searched under the $CGET_PREFIX/etc/cget/recipes/ directory. A cmake package
can install additional recipes through cget.

For example, we could build a simple recipe for zlib so we don’t have to remember the url everytime. By adding the
file $CGET_PREFIX/etc/cget/recipes/zlib/package.txt with the url like this:

http://zlib.net/zlib-1.2.8.tar.gz

We can now install zlib with just cget install zlib. Additionally, we can set additional options as well. For ex-
ample, if we want to install boost, we can write $CGET_PREFIX/etc/cget/recipes/boost/package.txt
to use the boost cmake(see Boost):

http://downloads.sourceforge.net/project/boost/boost/1.62.0/boost_1_62_0.tar.bz2 --cmake boost

We can also make zlib a dependency of boost by writing a $CGET_PREFIX/etc/cget/recipes/boost/requirements.txt
file listing zlib:

zlib

So, now we can easily install boost with cget install boost and it will install zlib automatically as well.

Getting recipes

The cget-recipes repository maintains a set of recipes for many packages. It can be easily installed with:

cget install pfultz2/cget-recipes

17

https://github.com/pfultz2/cget-recipes

cget Documentation, Release 0.1.0

18 Chapter 6. Using recipes

CHAPTER 7

Indices and tables

• genindex

• modindex

• search

19

cget Documentation, Release 0.1.0

20 Chapter 7. Indices and tables

Index

Symbols
–cxx COMPILER

init command line option, 12
–cxxflags FLAGS

init command line option, 12
–debug

install command line option, 13
–ldflags FLAGS

init command line option, 12
–release

install command line option, 13
–shared

init command line option, 12
–static

init command line option, 12
–std TEXT

init command line option, 12
–test-all

install command line option, 13
-B, –build-path PATH

build command line option, 11
init command line option, 12
install command line option, 13

-C, –clean
build command line option, 11

-D, –define VAR=VALUE
build command line option, 11
init command line option, 12
install command line option, 13
requirements.txt command line option, 9

-G, –generator GENERATOR
build command line option, 11
install command line option, 13

-H, –hash
requirements.txt command line option, 9

-P, –path
build command line option, 11

-T, –target TARGET
build command line option, 11

-U, –update

install command line option, 13
-X, –cmake

install command line option, 13
requirements.txt command line option, 9

-b, –build
requirements.txt command line option, 9

-c, –configure
build command line option, 11

-f, –file FILE
install command line option, 13

-p, –prefix PATH
build command line option, 11
clean command line option, 12
init command line option, 12
install command line option, 13
list command line option, 14
pkg-config command line option, 14
remove command line option, 14

-t, –test
build command line option, 11
install command line option, 13
requirements.txt command line option, 9

-t, –toolchain FILE
init command line option, 12

-v, –verbose
build command line option, 11
clean command line option, 12
init command line option, 12
install command line option, 13
list command line option, 14
pkg-config command line option, 14
remove command line option, 14

-y, –yes
build command line option, 11
clean command line option, 12
remove command line option, 14

B
build command line option

-B, –build-path PATH, 11
-C, –clean, 11

21

cget Documentation, Release 0.1.0

-D, –define VAR=VALUE, 11
-G, –generator GENERATOR, 11
-P, –path, 11
-T, –target TARGET, 11
-c, –configure, 11
-p, –prefix PATH, 11
-t, –test, 11
-v, –verbose, 11
-y, –yes, 11

C
clean command line option

-p, –prefix PATH, 12
-v, –verbose, 12
-y, –yes, 12

I
init command line option

–cxx COMPILER, 12
–cxxflags FLAGS, 12
–ldflags FLAGS, 12
–shared, 12
–static, 12
–std TEXT, 12
-B, –build-path PATH, 12
-D, –define VAR=VALUE, 12
-p, –prefix PATH, 12
-t, –toolchain FILE, 12
-v, –verbose, 12

install command line option
–debug, 13
–release, 13
–test-all, 13
-B, –build-path PATH, 13
-D, –define VAR=VALUE, 13
-G, –generator GENERATOR, 13
-U, –update, 13
-X, –cmake, 13
-f, –file FILE, 13
-p, –prefix PATH, 13
-t, –test, 13
-v, –verbose, 13

L
list command line option

-p, –prefix PATH, 14
-v, –verbose, 14

P
pkg-config command line option

-p, –prefix PATH, 14
-v, –verbose, 14

R
remove command line option

-p, –prefix PATH, 14
-v, –verbose, 14
-y, –yes, 14

requirements.txt command line option
-D, –define VAR=VALUE, 9
-H, –hash, 9
-X, –cmake, 9
-b, –build, 9
-t, –test, 9

22 Index

	Introduction
	Installing cget
	Quickstart
	Usage

	Package source
	Directory
	File
	URL
	Github
	Recipe
	Aliasing

	Requirements file
	Commands
	build
	clean
	init
	install
	list
	pkg-config
	remove

	Using cget
	Installing cmake packages
	Installing non-cmake packages

	Using recipes
	Structure of a recipe
	Getting recipes

	Indices and tables

